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Abstract - Electromyogram signal is a biomedical signal that 
measures electrical activity produced in a muscle during its 
contraction. This work presents a prototype system for moving 
a prosthetic lower arm, without prior operation intervention, 
using electrodes that measure electromyogram (EMG) signals 
placed on two muscles only. The signals are then read by 
sensors connected to Arduino microcontroller, processed and 
passed to MATLAB via Bluetooth where features are extracted 
and input to a neural network to classify one out of six 
movements. A servo motor receives a driving signal to move 
the simulated arm to the required position. The system enables 
the arm to do six movements without any external help. The 
system results are compared to other systems’ results and it 
was able to achieve 99.7% classification rate which is 
considered, among other systems, the highest for classifying six 
movements. 

Keywords - EMG signals; upper limb amputation; prosthetic 
lower arm; movement classification. 

I.  INTRODUCTION 
All Current commercial devices help people who have 

limb amputation to restore the appearance of a limb, and to 
improve the quality of life. The prosthetic devices should 
enable the patient to perform normal limb movements to a 
great extent. Those devices should also be light weight and 
affordable. Considering upper limb amputation, there are 
three broad categories of upper limb prosthesis: passive 
(cosmetic), body-powered and externally powered. Body-
powered components are light, durable and have limited 
sensory feedback. They exploit the body’s own strength to 
provide the power to drive this form of prosthesis. The 
externally powered prosthesis use components that are 
driven by an external power source, such as electricity or 
some other source of power external to the body. There are 
five types of arm amputation [1]: 1- Finger or digit 
amputation, where the thumb or one or more of the fingers 
are amputated. 2- Wrist disarticulation, where the 
amputation occurs through the wrist joint, removing the 
hand. 3- Elbow disarticulation – where the amputation 
occurs through the elbow joint, removing the hand, wrist 
and forearm. 3- Transradial amputation, where the hand and 
a section of the arm are amputated below the elbow. 4- 
Transhumeral amputation, where the hand and a section of 

the arm are amputated above the elbow. The system 
proposed is concerned with the last type which is 
Transhumeral amputation. The electromyogram (EMG) is 
an electrical signal that is generated as a result of normal 
muscle contraction. The amplitude of the signal is 
proportional to the level of contraction of the muscle. 
Myoelectric components are chosen because they don’t put 
any effort on the shoulders as they don’t utilize the shoulder 
power. Above all, they provide output force independent of 
physical ability [2]. Hybrid systems, which are combination 
of body-powered and myoelectric components, are 
commonly used to handle amputation at or above the elbow. 
They allow two joints to be controlled at once – one with 
body power and one with myoelectric control. They are 
generally less heavy and less expensive than a completely 
externally powered system. Controlling the movement of a 
prosthetic arm based on EMG is the objective of this work. 
In [3], a three degrees freedom system was proposed with 
classification rate of 90%. In [4], another system was 
proposed which could detect the amputee's intended motion 
among six kinds of motions using the multi channel EMG 
signals with 97.6% classification. Another system was 
presented in [5] where the intended action of the arm is 
understood from the EMG signal parameters. The pulses are 
generated by using microcontroller and the respective motor 
is driven for movements of the hands and wrist. A project 
prototype in [6] proposed a controlled arm that uses EMG 
electrical signals from the forearm Flexo-Extensors muscles 
that control the hand movements. In 2013, another research 
[7] was done where the designed prosthetic arm had one 
degree of freedom. It was able to do one action (grabbing 
action) by capturing the EMG signals from the muscles 
which are responsible of opening and closing of a hand. In 
[8], a classifier for four movements was proposed using 
EMG signals based on an autoregressive (AR) model 
representation and a neural network, and two myoelectric 
control strategies based on Finite State Machine. A rate of 
classification ranging from 91% to 98% was achieved by 
combining a low-order AR model with a feed-forward 
neural network. In 2014, a research was done [9] to classify 
four arm movements using ANN and EMG. There are a 
number of researches done on prosthetic hand motion 
recognition. Few are listed hereafter. Work in [10] designed 
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a prosthetic hand controller for 10 movements with 91.5% 
discrimination rate. Another work for prosthetic hand wrist 
motion identification was done in [11] where six specific 
hand and wrist motions are identified from the EMG signals 
obtained from ten different able-bodied wrist. Accuracy was 
91%±1.9. Another work for hand and wrist is presented in 
[12] where five movements for the wrist-hand mobility were 
identified using EMG and neural network. The work in [13] 
focused on minimizing the misclassifications and increasing 
the robustness of hand prosthesis controllability. Upper limb 
human control was also presented in [14]. A prosthesis or 
rehabilitation device control must be quite simple and at the 
same time give the user a degree of freedom to select a 
motion from several movements. Having a system with light 
weight components that don’t harness the shoulders is not 
quite enough. It is important that the system is affordable 
too. In this paper, a prototype system is presented that 
satisfies these requirements for controlling the movement of 
a prosthetic lower arm using EMG signals. 

II. MATERIALS 
The amplitude of EMG signal is typically between 0-10 

mV (+5 to -5) mV. The majority of signal information lies 
between the frequencies of 15 and 400 Hz. An amplifier is 
necessary for EMG signal. The amplitude of the EMG 
contains a great deal of the signal information. Based on 
[16], EMG densities fell in between the theoretic Gaussian 
and Laplacian densities. Of these two densities, the 
Gaussian density best described the data which can be 
modeled as a Gaussian random process. The time-varying 
standard deviation (SD) value is only one of different 
estimators of muscular activity. The most used is the Root 
Mean Square (RMS) value, but the Absolute Mean and the 
Difference Absolute Mean values are often used in 
microcontroller based system because of their low 
computational cost. The time windows length also plays an 
important role 

Fig. 1 shows the system hardware. It consists of EMG 
bipolar electrodes, sensors, microcontroller (Arduino Uno), 
servo motor and power supply.  

 
Figure 1.  System hardware 

The software used is MATLAB. The bipolar 
configuration acquires the EMG signal using two EMG 
detecting surfaces (electrodes) and a reference electrode 
which acts as a reference point for the 2 electrodes. The two 

detecting electrodes are placed 1-2 cm from each other. The 
signals from the two EMG surfaces are connected to a 
differential amplifier which amplifies the signal between the 
two electrodes differentially with respect to the reference 
electrode. Electrical noise is gained by the EMG signal while 
moving through the tissues. The configuration eliminates the 
common noise between the two electrodes and hence a better 
signal-to-noise ratio. After reading the signals, features are 
extracted and fed into Artificial Neural Network (ANN) to 
classify the movement required to be done by the prosthetic 
limb. The output from the ANN is connected to 
microcontroller, Arduino Uno, whose output drives a servo 
motor, placed in the arm joint, to move with a specific 
degree causing a motion on the prosthetic limb. Fig. 2 shows 
the system assembly. 

The Muscle Sensor Toolkit used is a very small kit in the 
size of a coin. It is connected to the muscle via bipolar 
electrodes and to the Arduino board as shown in fig. 3.  

It is very sensitive that it can produce electrical signals 
when a small contraction of the muscle occurs. It is 
designed to be used directly with a microcontroller. The 
sensors do not output a raw EMG signal but rather an 
amplified, rectified, and smoothed signal that will work well 
with a microcontroller’s analog to digital converter (ADC). 
Besides its availability in the local market and its lower 
price relative to other sensor kits, the toolkit has the 
following features: 1- Small Form Factor (1x1inch). 2- 
Adjustable Gain – Improved Ruggedness. 3- New On-board 
3.5mm Cable Port. 4- Pins fit easily on Standard 
Breadboards. Table I shows the toolkit power specifications. 
 

 
Figure 2.  System assembly  

 

 
Figure 3.  Muscle sensor tool kit connection 
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TABLE I.  SENSOR TOOLKIT POWER SPECS 

Parameter Min Typ Max 
Gain Setting,  
Gain = 
 207*(X /1 k�) 

0.01 � 
(0.002x) 

50 k� 
(10,350x) 

100 k� 
(20,700x) 

Power Supply 
Voltage (Vs) 

±3V ±5V ±30V 

Output Signal 
Voltage (Rectified & 
Smoothed) 

0V �� +Vs

Differential input 
voltage 

0 mV ������ +Vs/Gain 

 
The Arduino Uno is a microcontroller board based on 

ATmega328. It weighs 25g. It has 14 digital input/output 
pins (of which 6 can be used as PWM outputs), 6 analog 
inputs, 16 MHz ceramic resonator, a USB connection, a 
power jack, an ICSP header, and a reset button. To get it 
started, simply connect it to a computer with a USB cable or 
power it with an AC-to-DC adapter or battery. The Arduino 
Uno can be programmed with the Arduino software. 
MATLAB-2013 was used for signal pre-processing, dataset 
creation, feature extraction, training ANN, generating 
prototype algorithms, and sending motor commands. 
ARDUINO-MATLAB library enabled us to read data from 
Arduino and send data to Arduino via MATLAB 
commands. This library contains a class called Arduino.m 
that enabled the communication with Arduino. It also 
contains .Uno file which works on Arduino Uno board.  

The servo motor is powered by two external batteries, 
each 2600 mAh. The Arduino software comes with a servo 
library. The specifications of the servo motor are: 
Dimension: 40.8 x 20.1x 38 mm , Voltage: 4.2-6v,  
Speed: 0.18 sec/60degree (4.8v), 0.16 sec/60degree (6v),  
Torque: 6 kg.cm (4.8v), 7.5 kg.cm (6v), Stall torque, 
Weight: 36g. Fig. 4 shows the connection of the servo motor 
to the Arduino board. 
 

 
Figure 4.  Arduino – servo motor connectivity 

The control signal sent from the microcontroller to the 
motor is in the form of a pulse. The width of the pulse 
corresponds to the angle that the motor will turn to. 

III. METHODOLOGY 

A. Dataset 
The scope of motion of the proposed system is six arm 

movements: 90° - full extension, 90°- full flexion, Full 

extension to 90°, full flexion to 90°, full extension to full 
flexion and full flexion to full extension. The scope of the 
amputees is those who did not have Targeted Muscle 
Reinnervation. To the best of our knowledge, there was no 
dataset available to be used in training/testing of the ANN. 
Based on [17], there isn’t significant difference between the 
strength of the muscles of a healthy subject and amputated 
person as long as the nerve is not dead. Accordingly, we 
generated the dataset. Human elbow is mainly actuated by 
two muscles: biceps and triceps, although it consists of more 
muscles. The contraction of the biceps flexes the elbow 
while the contraction of the triceps extends the elbow. By 
measuring the amount of force generated by these two 
muscles, the elbow angle can be controlled. Ten healthy 
subjects volunteered to participate in creating the dataset. 
The subjects were five males and five females within age 
group of 15-24 years. From each, 15 samples for each 
movement of the above mentioned six movements were 
collected. Each reading session consists of 15 readings for 
every subject. The reading takes 1 second to record 500 
samples for triceps and 500 samples for biceps. The readings 
are further used to train different classifiers. 

B. Setup 
The EMG signals were recorded as follows: 
- The first electrode is placed in the middle of the target 

muscle body, after cleaning the skin thoroughly, and is 
connected to the cable’s snap connector. 

- The second electrode is placed at one end of the target 
muscle body and connected to the other cable’s snap 
connector. 

- The third electrode is placed on a bony non-muscular 
part near the target muscle and is connected to the cable’s 
snap connector. 

- The Arduino is then connected to the sensors and 
connected to a Laptop by a cable or by Bluetooth. 
MatLab 2013 was used for EMG signal preprocessing, 
creating datasets, feature extraction, training artificial neural 
network (ANN), and sending motor commands. 

The signal recording is based on a rectangular window 
with amplitude 1 and width 500 (which means 1 second 
window) that passes through the signal.  The window and 
the original signal are multiplied. Wavelet transform is then 
applied to the resultant signal and features are extracted.  
The features vector is considered as an input to the neural 
network. If the network recognizes the input as one of the 
six movements, MATLAB sends servo write command to 
the Arduino which moves the servo motor with the proper 
angle that corresponds to the movement detected by the 
neural network. The window is then shifted by 500 to begin 
recording a new movement. If the movement is not 
recognized, nothing is sent to the motor and hence no 
motion occurs, however, the window is shifted by 50 to 
search for another movement in the signal. 
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C. Feature Extraction 
Arduino should read 500 analog samples in only one 

second. To achieve this, a modification was done in the 
timer class and analogRead function of MatLab. 

For training and testing the ANN, features were 
extracted from two types of signals; raw signals and 
processed signals. 

1- Raw Data: where the EMG signals are sampled 
directly and fed into the ANN. This methodology is very 
simple and easy to implement however; it is very slow. 

2- Wavelet Transform: since almost all biological signals 
like ECG, EEG and EMG are non-stationary, wavelet 
transform is more suitable to be applied on EMG than 
Fourier transform [15]. 

The EMG signals can be easily affected by various 
noises while passing through different fibers. Typical band 
pass filter was applied to the signal to reduce noise from 
electrodes, motion artifacts and electric power lines. A 
notch filter of 3dB gain and 49-51 Hz has been used to 
remove the 50 Hz power line noise since this frequency is 
not within the dominant frequency (70-300 Hz) range of 
recorded EMG signals. Wavelet transform method has been 
further applied. Daubechies (db2) mother wavelet function 
has been selected and applied on detail wavelet co-efficient 
for noise reduction. The wavelet transform techniques can 
successfully localize time and frequency components and 
can provide good frequency resolution at high frequencies. 
It helps in identifying and eliminating the noise components 
in the signal by preserving important high-frequency 
transients. For de-noising the EMG signals, a wavelet 
transform of six level decompositions has been applied 
giving 8 samples for the EMG signal. Fig 5 shows the 
original signal while Fig. 6 shows the rebuild from level 6 
decomposition coefficients. Coefficients of further 
decompositions could not rebuild the original signal. Fig. 7 
shows the deteriorated rebuild of the signal from further 
decomposition coefficients. It is worth noted here that the 
level at which the decomposition stops is subject to trial of 
several levels and getting the best results. 
 

 
Figure 5.  Original signal 

 
Figure 6.  Signal generated from level 6 decomposition 

 
Figure 7.  Deteriorated rebuild of the signal  

D. Classification 
Two categories of networks were tested; supervised and 

unsupervised. For the supervised category, configurations 
used are as follows: 

1- A feed-forward backpropagation network with 
sigmoid functions in hidden neurons and linear functions in 
output neurons, (CONFIG A). 

2- A feed-forward backpropagation network, with 
sigmoid function in both hidden and output neurons layers, 
(CONFIG B). 

3- A feed-forward network whose ith level neurons 
forward their outputs to all of the successive level neurons, 
(CONFIG C).  

For the unsupervised category Self Organizing Map 
(SOM) was tested as an unsupervised model. 

IV. RESULTS AND ANALYSIS 

A. Supervised networks 
Each of the networks tested was trained with 55% of 

data, 15% validation and 30% testing after applying wavelet 
transform to the EMG signal. 

The best performance results were the following 
configurations:  

1- 99.7487% for CONFIG A network with 10, 30, 10 
neurons in the corresponding layer. Elapsed time was 
0.093s. Fig. 8 shows the performance of the network with 
various configurations. 

2- 99.2063% for CONFIG B network with 30, 10 
neurons in the corresponding layer. Elapsed time was 
0.084s. Fig. 9 shows the performance of the network with 
various configurations. 
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Figure 8.  Performance of CONFIG A 

 

 
 

Figure 9.  Performance of CONFIG B 

3- 99.3915% for CONFIG C network with 10, 30, 10 
neurons in the corresponding layer. Elapsed time was 
0.233s. Fig. 10 shows the performance of the network with 
various configurations. 
 

 
 

Figure 10.  Performance of CONFIG C 

B. Unsupervised networks 
Several unsupervised networks were tested but the 

results were not promising. SOM network results are 
presented in fig. 11 which shows 6 clusters that indicate the 
6 arm movements in consideration. Ideally, each cluster of 
the 6 clusters should contain 195 (1170 / 6) samples. 
However, the figure shows that one cluster contains quite a 
small number of samples (106) and another cluster contains 
relatively a huge number of samples (437). The SOM 
network was not capable of classifying the movements. 
 

Figure 11.  SOM Results 

The FFBP networks were the most successful. All hit 
rates were above 99%. The best was the FFBP that achieved 
99.74% classification. This is the highest rate achieved for 6 
movements’ classification. 

A new feature was introduced to the system which was 
using Bluetooth module on the Arduino shield to 
communicate with the Matlab program on PC. The response 
time of the Bluetooth version was the same as in the wired 
version. The Bluetooth version makes the system more user 
friendly as it enables the patient to go anywhere without any 
wires connected from the Arduino to the PC. To enable the 
Bluetooth, a modification is done in the pde file (Arduino 
code) and the Matlab file running on the PC where the baud 
rate between the PC and the Arduino must be 9600 not 
115200 to enable sending and receiving data without any 
failures.  

Table II shows a comparison between the proposed 
system and other systems. The first [7] deals with six arm 
movements. Amputees in [7] and the proposed one did not 
undergo Targeted Muscle Reinnervation (TMR) operation 
which transfers residual arm nerves to alternative muscle 
sites. The second compared system [18] deals with 11 arm 
movements’ classification on amputees who had undergone 
TMR. In ref [19], 11 movements classification system is 
compared. 
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TABLE II.  COMPARISON BETWEEN THE PROPOSED SYSTEM AND OTHER SYSTEMS

System 
reference 
number 

Movements performed Network Amputee 
preparation 

Bluetooth Accuracy Response 
time 

[7] 6 movements: Elbow flexion, Elbow 
extension, Wrist supination, Wrist 
pronation, Grasp, Rest. 

Multilayer Perceptron 
network using time series 
model parameters for 
5000 iterations

 No No 97.6% Not available 

Proposed 
system 

6+1 movements: 90 to full flexion, 90 to full 
extension, Full extension to 90, Full flexion
to 90, Full extension to full flexion, Full 
flexion to full extension, Rest.

Feedforward 
backpropagation network 
with three hidden layers 
(10 , 30 , 10)

 No Yes 99.74% 0.0.093 s 

[18] 11 movements: Elbow flexion and
extension, Wrist flexion and extension,
Wrist pronation and supination, Hand 
opening, 3 hand grasps, No- movement 

Linear discriminant 
analysis (LDA) 

TMR, which transfers 
residual arm nerves to 
alternative muscle sites

No 90-100% 
depending 
on the 
motion 

Not available 

[19] 6 movements: Grip control open and close,
wrist extension and flexion, left and right
rotation of the robotic arm . 

Eucleadian distance 
between DFS coefficients 
of unknown movement 
and stored coefficients

No   81.6% Not available 

 

V. CONCLUSION 

A prototype system was proposed to simulate the 
movement of a prosthetic arm. The system was able to 
achieve 99.7% real time classification rate which is 
considered among other systems, the highest for classifying 
6 motions. The system is also affordable regarfing price and 
the on-body mass. The price of the hardware used was EGP 
1840 which was equivalent to about 300U$ while the 
weight of the equipment 25 g for the board, 36g for the 
motor totaling, 100g for the prosthetic lower arm model, and 
500g for the two batteries adding to a total of 2.61kg. Some 
codes in MatLab modules had to be modified to adjust to 
the devices used. A dataset was also created for 6 lower arm 
movements. The future work will focus on 2 things: 
embedding the system in one unit and including hand 
movement beside the arm movements. 
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